Bayesian Analysis of Stochastic Volatility Models with Levy Jumps: Application to Risk Analysis
نویسندگان
چکیده
In this paper I analyze a broad class of continuous-time jump diffusion models of asset returns. In the models, stochastic volatility can arise either from a diffusion part, or a jump part, or both. The jump component includes either compound Poisson or Lévy α-stable jumps. To be able to estimate the models with latent Lévy α−stable jumps, I construct a new Markov chain Monte Carlo algorithm. I estimate all model specifications with S&P500 daily returns. I find that models with Lévy α-stable jumps perform well in capturing return characteristics if diffusion is a source of stochastic volatility. Models with stochastic volatility from jumps and models with Poisson jumps cannot represent excess kurtosis and tails of return distribution. In density forecast and VaR analysis, the model with Lévy α-stable jumps and joint stochastic volatility performs the best among all other specifications, since both diffusion and infinite activity jump part provide information about latent volatility. JEL classification: C1; C11; G1; G12
منابع مشابه
Bayesian Analysis of Stochastic Volatility Models with Levy Jumps: Application to Value at Risk
In this paper we analyze asset returns models with diffusion part and jumps in returns with stochastic volatility either from diffusion or pure jump part. We consider different specifications for the pure jump part including compound Poisson, Variance Gamma and Levy α-stable jumps. Monte Carlo Markov chain algorithm is constructed to estimate models with latent Variance Gamma and Levy α−stable ...
متن کاملA Bayesian Analysis of Return Dynamics with Stochastic Volatility and Levy Jumps
We develop Bayesian Markov chain Monte Carlo methods for inferences of continuoustime models with stochastic volatility and infinite-activity Levy jumps using discretely sampled data. Simulation studies show that (i) our methods provide accurate joint identification of diffusion, stochastic volatility, and Levy jumps, and (ii) affine jumpdiffusion models fail to adequately approximate the behav...
متن کاملBayesian analysis of GARCH and stochastic volatility: modeling
This paper develops a Bayesian model comparison for two broad major classes of varying volatility model, GARCH and stochastic volatility (SV) models on financial time series. The leverage effect, jumps and heavy-tailed errors are incorporated into the two models. For estimation, the efficient Markov chain Monte Carlo methods are developed and the model comparisons are examined based on the marg...
متن کاملEconometric Analysis of Jump-Driven Stochastic Volatility Models
This paper introduces and studies the econometric properties of a general new class of models, which I refer to as jump-driven stochastic volatility models, in which the volatility is a moving average of past jumps. I focus attention on two particular semiparametric classes of jump-driven stochastic volatility models. In the first the price has a continuous component with time-varying volatilit...
متن کاملJoint Bayesian Stochastic Inversion of Well Logs and Seismic Data for Volumetric Uncertainty Analysis
Here in, an application of a new seismic inversion algorithm in one of Iran’s oilfields is described. Stochastic (geostatistical) seismic inversion, as a complementary method to deterministic inversion, is perceived as contribution combination of geostatistics and seismic inversion algorithm. This method integrates information from different data sources with different scales, as prior informat...
متن کامل